ENGR 221 - Dynamics

Spring 2022

Instructor: Mark Holdhusen, Ph.D. E-mail: mholdhus@uwsp.edu Phone: (715) 212-5364 (text) Zoom: uwsp.zoom.us/j/8176801330 Office Hours

- Wausau (381-D): MTW 11:00-12:00
- Marshfield (622): R 12:00-1:00
- Stevens Point (B118): F 11:00-12:00

Description:

Kinematics, force-mass-acceleration relations, work and energy, impulse and momentum and moments of inertia of mass. This course will serve the requirements of the several engineering curricula.

Text:

Hibbeler – Engineering Mechanics: Dynamics, ANY EDITION

Website:

https://canvas.uwsp.edu

• This class is a hybrid format so much of the course in online at the above website.

Meeting Times:

- Wednesday Wausau Room 284 9:00AM 9:50AM
- Thursday Marshfield Room 201 2:00PM 2:50PM
- Friday Stevens Point Science Building A112 9:00AM 9:50AM
- All meetings also in Zoom, check Canvas for link

Grading:

- 10% In-class problems: Each weekly discussion meeting will be devoted to an in-class assignment consisting of problems based on topics presented online. It can be worked on in groups. Full credit will be given for simply completing the problems.
- 10% Homework: Assignments, due after each week. Group work is encouraged on homework; however, each student must submit their own assignment. The answers will be given with the assignment. These answers should be used as a guide as to whether you've done the problem correctly. The homework will be graded for completeness only.
- 10% Online quizzes: Quasi-weekly online quizzes via Canvas corresponding to each homework assignment. Each quiz will consist of a handful of questions from a larger bank of questions. You will be allowed 2 attempts for each quiz and the best score will be recorded.
- 40% Exams: 2 exams as shown on the schedule. Each exam will consist of a few open-ended problems similar to those done for homework. One 8.5" x 11" sheet of notes, textbook, and calculator is allowed. You must use your own note sheet. Partial credit will be given.
- 20% Final Exam: The final exam will consist of 10 multiple choice questions taken from the Fundamentals of Engineering certification exam. One sheet of notes, textbook, and a calculator will be allowed on the final exam. Partial credit will be given.
- 10% Design Project: Design, build, and mathematically model a system. More details will follow.

Grading Scale

- 93 100% = A
- 90 92% = A-
- 87 89% = B+
- 83 86% = B

- 80 82% = B-
- 77 79% = C+
- 73 76% = C
- 70 72% = C-

- 67 69% = D+
- 63 66% = D
- 60 62% = D-
- < 59% = F

Course Schedule:					
Date	Торіс	Assignments	Date	Торіс	Assignments
24-Jan 25-Jan 26-Jan 27-Jan	Rectilinear Kinematics		28-Mar 29-Mar 30-Mar 31-Mar	Acceleration Analysis	Homework 7 Online Quiz 7
28-Jan		Class Problems 1	1-Apr		Class Problems 8
31-Jan 1-Feb 2-Feb 3-Feb 4-Feb	Rectangular & Normal/Tangential Coordinates	Online Quiz 1	4-Apr 5-Apr 6-Apr 7-Apr 8-Apr	Newton's 2nd Law on Rigid Bodies	Homework 8
7-Feb 8-Feb 9-Feb 10-Feb	Cylindrical Coordinates & Relative Motion	Homework 2 Online Quiz 2	11-Apr 12-Apr 13-Apr 14-Apr	Work/Energy on Rigid Bodies	Homework 9 Online Quiz 9
		Class Problems 3	15-Apr		Class Problems 10
14-Feb 15-Feb 16-Feb 17-Feb	Newton's 2nd Law	Online Quiz 3	19-Apr 20-Apr 21-Apr	Impulse/Momentum on Rigid Bodies	Online Quiz 10
18-Feb		Class Problems 4	22-Apr		Class Problems 11
21-Feb 22-Feb 23-Feb 24-Feb 25-Feb	Work/Energy	Homework 4 Online Quiz 4 Class Problems 5	25-Apr 26-Apr 27-Apr 28-Apr 29-Apr	Review 2	Homework 11 Online Quiz 11
28-Feb 1-Mar 2-Mar 3-Mar 4-Mar	Impulse/Momentum	Homework 5 Online Quiz 5 Class Problems 6	2-May 3-May 4-May 5-May 6-May	Project	Exam 2
7-Mar 8-Mar 9-Mar 10-Mar 11-Mar	Review 1	Homework 6 Online Quiz 6	9-May 10-May 11-May 12-May 13-May	Final Review	
14-Mar 15-Mar 16-Mar 17-Mar	Fixed axis rotation & velocity analysis	Exam 1	16-May 17-May 18-May 19-May	Final Exam	
21-Mar 22-Mar 23-Mar 24-Mar 25-Mar	Spring B	reak			